
Week 1 - Wednesday

 What did we talk about last time?
 Course overview
 Began introduction to software engineering

 What exactly should it do? What if people disagree?
 How does this product fit into the rest of the stuff the company

does?
 How will users interact with the product?
 What parts should the product have?
 What languages should it be written in?
 What standards should we use to write it?
 How do we know if the program does what it's supposed to?
 How much time and money will it take to make it?
 What kind of documentation will it need?
 How will it change in the future?
 How far along are we in the process of making it?

 The requirements themselves are huge
 The designs are large and complicated
 The code is long
 Testing gets harder because there's more to go wrong
 More people are on the project
 Tracking progress gets harder
 Communication gets harder
 More managers are needed

 Electronic computers were born in World War II
 Back then, getting the hardware to work was nearly impossible
 Programs were short by necessity
 In the 1950s, computers got much more powerful, allowing more complex

programs
 The field split into computer engineering (hardware) and computer science (software)

 By the late 1960s, software development projects with large numbers of people
were running into problems

 Since then, people have worked hard on improving software engineering, but
we still don't really know what we're doing

It was on one of my journeys between the EDSAC room and the punching equipment that
… the realization came over me with full force that a good part of the remainder of my
life was going to be spent in finding errors in my own programs.

– Maurice Wilkes, Winner of the 1967 Turing Award

 Most kinds of engineers have certification requirements
 But not software engineers … yet

 In 2012, a survey of software projects found:
 39% were on time and on budget with expected features
 43% were late, over budget, or missing features
 18% totally failed

 Another study found that large IT projects were 66% over budget
33% of the time

 A series of interviews suggested that 75% of executives expected
their software projects to fail

 Software project managers haven't been educated in software
engineering or project management
 That's why you're here now

 Projects are underfunded and understaffed because
managers are unwilling

 Well-planned, well-run projects can fail for technical reasons
 Programming is still hard

 A project is when you try to achieve a goal under time or
money constraints

 Management is assembling, directing, and supporting human
resources to do projects
 People, at least Americans, don't like the idea of management
 But it's impossible to do big projects without it

 Scope
 How much the project is trying to accomplish
 Creep is the tendency for the work to increase

 Time
 Must be reasonable for the project size
 Must be monitored

 Cost
 Similar issues as with time

 Quality
 How good is acceptable?
 Quality assurance must be done through the project, not just at the end

 Resources
 Do you have the people (and tools) to get the job done?

 Risks
 Have you planned for things going wrong?

 There's a graphical depiction of project management used imply relationships
between time, scope, cost, and quality

 This triangle is intended to indicate that you can't change scope, time, or cost
without affecting the other two (at least if you want to maintain quality)

 Increasing scope means increasing time or cost (or both)
 It's obvious, but managers are sometimes tempted to push workers to work

faster, for example, pretending there are no consequences

Scope

Quality

CostTime

 Traditional methods
 Careful planning and hierarchical leadership
 Steps like requirement specification, design, implementation, testing, and maintenance
 Example: Waterfall model

 Agile methods
 Constant iteration
 Self-directed teams
 Minimal documentation
 Example: Scrum

 Both methods are widely used and many successful teams use aspects of both
 The project for this class will mostly employ traditional methods because agile

works best with experienced developers

 Traditional methods rely on project managers while agile
methods focus on self-directed teams

 Managers are responsible for:
 Planning: Setting goals and requirements, deciding who does what

when, estimating costs, etc.
 Execution: Getting resources, training people, deciding processes
 Control: Collecting and analyzing data and making adjustments
 Leading: Motivating people, solving disagreements, supporting

people

 Requirements are functions or characteristics that software
has

 Customers or users determine the requirements
 Stakeholder is a broad term that includes customers, users,

developer, managers, and maybe the public
 Designs specify how the software system will meet the

requirements
 Designs can look at a system from different aspects
 Design patterns are standard solutions to problems that have

been useful in the past and can help structure designs

 After the design is made, the software must be implemented
in one or more programming languages

 Compilers and interpreters are used to run the programs
 Editors allow people to write code
 Version control tools let people track the evolution of the

code
 Code checkers see if the code is meeting certain standards
 Debuggers help programmers find mistakes

 Following certain practices can reduce defects
 Code reviews (literally looking through code) is one technique for finding

defects
 Testing is another
 Unit testing tools help us run test cases automatically
 Code coverage tools make sure all parts of the program are being tested

 Integrated development environments (IDEs) combine tools for editing and
testing code, doing version control, and lots of other things
 IntelliJ IDEA
 Eclipse
 Xcode
 Visual Studio
 IDLE

 For any large software project (and even small ones), it's
valuable to have a way to track changes over time

 Such tools are called version control systems
 They allow:
 Changes to be tracked over time
 Developers to check code into repositories
 Comparison of files over time
 Documentation of changes made

 It's more than just a glorified backup system

 A repository is where all the development data is stored
 Usually called repos by professionals

 Repositories include the current source code as well as a
history of all the changes ever made

 For source code, most version control systems use delta
compression, meaning that only the differences between files
are stored

 Thus, hundreds of versions of your code can be stored without
taking up hundreds of times the space

 Committing a file is adding its changes to a repository
 Cloning means creating a copy of another repository,

including history
 Merging is combining two sets of files with independent

changes into one set with changes from both
 Pulling (or fetching) copies the changes from an outside

repository and adds them to the current repository
 Pushing copies the changes from the current repository to an

outside repository

 Merging sucks
 You can try to avoid it, but ultimately, two people (or even

yourself working on two different local copies) will make
changes to the same files

 One of them will push their changes first
 The second will then have to merge
 Most systems are smart and can show those lines that conflict
 If not, there are tools that can do that

 Version control systems provide ways to
organize the development process

 One such feature is a visualization of the
development process

 The main sequence of development is
called the trunk

 Code bases that diverge from main
development (to work on a new feature)
are branches

 Tags are snapshots of the code base in a
particular state, often a release HEAD

Discontinued

Release 1

Release 2

Tags Trunk Branches

 Git
 Git is one of the most popular systems with a distributed model

 SVN
 SVN is one of the most popular systems with a client-server model

 Microsoft Team Foundation Server
 Microsoft always has to have its own thing

 Mercurial
 Mercurial competes with Git as a distributed VCS

 Perforce
 A big suite of tools that can do its own things or integrate with Git

 CVS
 An old client-server tool that was popular until SVN overtook it

 Linus Torvalds, the creator of Linux, created Git in 2005
 Linux is a huge, distributed development project, and he

needed a tool to organize the contributions people were
making

 Torvalds hated CVS
 He's a guy who hates a lot of things

 Git is a distributed VCS
 Every computer has a complete history of all the changes,

ever
 There's no central server
 Programmers make changes and push them to or pull them

from other repositories
 All operations are designed to be fast
 Torvalds did a pretty good job, but some common tasks are

confusing

 Once a repository is created in a directory, you can create files
in that directory

 A file isn't tracked by Git until you add it
 A group of tracked files with changes can be committed to

the local repository
 Then, you can choose to push those changes to another

repository if you want other people to have them
 Sometimes, you don't want files to be tracked, so you can add

their names (or wildcards like *.class) to a .gitignore
file

Working
Directory

Staging
(Index)

Local
Repository

Remote
Repository

Add Commit Push

FetchReset

Pull

It's also possible to reset to an earlier commit, overwriting the working directory, but it's
confusing to put that arrow in.

 There are many tools built on top of Git, but Git was designed for command-line
operation
 git init [project] Create a new repo
 git clone [url] Copy a repo from the URL
 git status List all new and modified files
 git add [file] Stage the file to be committed
 git commit -m "message" Commit the staged files with the message
 git fetch [bookmark] Download changes from bookmarked repo
 git merge [bookmark]/[branch] Combine bookmarked repo into local branch
 git pull Fetch + merge

 There's a lot more, but that's enough to get yourself in trouble

 IntelliJ has a GUI interface for Git
 It's easiest to use the Get from Version Control option when making a

new project
 If you're using GitHub, it's good to add your GitHub account to your IntelliJ
 For plain-old Git, you can use the Repository URL

 No matter what you do, pay attention to where the files get stored
 Don't store stuff on lab computers since it'll get wiped
 You can use OneDrive if you want to work on lab computers

 Once you've got the project set up in IntelliJ, you can use its built-in tool
to talk to the GitHub repo

 The initial set-up is annoying, but then it's not bad
 Manage all files through IntelliJ, not by doing uploads through GitHub

 Git is confusing!
 Don't be afraid to ask me questions
 But you can also Google
 There are some reasonably good videos to introduce Git:
 https://www.youtube.com/watch?v=USjZcfj8yxE
 https://www.youtube.com/watch?v=HVsySz-h9r4

 Git cheat sheet: https://www.jrebel.com/system/files/git-
cheat-sheet.pdf

https://www.youtube.com/watch?v=USjZcfj8yxE
https://www.youtube.com/watch?v=HVsySz-h9r4
https://www.jrebel.com/system/files/git-cheat-sheet.pdf

 GitHub.com provides online repositories for code
 Private repositories (except for education) are not free
 Public repositories are free

 Git can be used without GitHub
 GitHub can even be used without Git (since it has support for SVN)
 GitHub has nice tools for:
 Visualizing who's committing and how much they have changed
 Issue tracking
 Writing commit information and Read Me files
 Pushing and pulling repos stored on GitHub
 Creating webpages related to releasing software

 Ironically, Linus Torvalds hates GitHub

 Friday is our first work day
 We'll get teams nailed down
 We'll get everyone added to GitHub
 It's not a bad idea to make a GitHub account if you haven't already

 Hopefully, you'll pick your projects

 Read Chapter 5: Software Product Requirements for Monday
 Start working on your projects!

	COMP 3100
	Last time
	Questions?
	Back to Software Engineering
	Questions when building software products
	More problems for large products
	History of software engineering
	State of software development
	Sources of problems
	Management
	Management
	Aspects of a project that must be managed
	Project management iron triangle
	Software development methods
	Management
	Requirements and design
	Implementation
	Assuring quality
	Version Control
	Version control
	Repository
	Actions
	Merging
	Visualization of development
	Popular version control systems
	Git
	History of Git
	Philosophy of Git
	Operations in Git
	Git process
	Git cheatsheet
	Using Git with IntelliJ
	Resources for Git
	GitHub
	Upcoming
	Next time…
	Reminders

