
Week 1 - Wednesday

 What did we talk about last time?
 Course overview
 Began introduction to software engineering

 What exactly should it do? What if people disagree?
 How does this product fit into the rest of the stuff the company

does?
 How will users interact with the product?
 What parts should the product have?
 What languages should it be written in?
 What standards should we use to write it?
 How do we know if the program does what it's supposed to?
 How much time and money will it take to make it?
 What kind of documentation will it need?
 How will it change in the future?
 How far along are we in the process of making it?

 The requirements themselves are huge
 The designs are large and complicated
 The code is long
 Testing gets harder because there's more to go wrong
 More people are on the project
 Tracking progress gets harder
 Communication gets harder
 More managers are needed

 Electronic computers were born in World War II
 Back then, getting the hardware to work was nearly impossible
 Programs were short by necessity
 In the 1950s, computers got much more powerful, allowing more complex

programs
 The field split into computer engineering (hardware) and computer science (software)

 By the late 1960s, software development projects with large numbers of people
were running into problems

 Since then, people have worked hard on improving software engineering, but
we still don't really know what we're doing

It was on one of my journeys between the EDSAC room and the punching equipment that
… the realization came over me with full force that a good part of the remainder of my
life was going to be spent in finding errors in my own programs.

– Maurice Wilkes, Winner of the 1967 Turing Award

 Most kinds of engineers have certification requirements
 But not software engineers … yet

 In 2012, a survey of software projects found:
 39% were on time and on budget with expected features
 43% were late, over budget, or missing features
 18% totally failed

 Another study found that large IT projects were 66% over budget
33% of the time

 A series of interviews suggested that 75% of executives expected
their software projects to fail

 Software project managers haven't been educated in software
engineering or project management
 That's why you're here now

 Projects are underfunded and understaffed because
managers are unwilling

 Well-planned, well-run projects can fail for technical reasons
 Programming is still hard

 A project is when you try to achieve a goal under time or
money constraints

 Management is assembling, directing, and supporting human
resources to do projects
 People, at least Americans, don't like the idea of management
 But it's impossible to do big projects without it

 Scope
 How much the project is trying to accomplish
 Creep is the tendency for the work to increase

 Time
 Must be reasonable for the project size
 Must be monitored

 Cost
 Similar issues as with time

 Quality
 How good is acceptable?
 Quality assurance must be done through the project, not just at the end

 Resources
 Do you have the people (and tools) to get the job done?

 Risks
 Have you planned for things going wrong?

 There's a graphical depiction of project management used imply relationships
between time, scope, cost, and quality

 This triangle is intended to indicate that you can't change scope, time, or cost
without affecting the other two (at least if you want to maintain quality)

 Increasing scope means increasing time or cost (or both)
 It's obvious, but managers are sometimes tempted to push workers to work

faster, for example, pretending there are no consequences

Scope

Quality

CostTime

 Traditional methods
 Careful planning and hierarchical leadership
 Steps like requirement specification, design, implementation, testing, and maintenance
 Example: Waterfall model

 Agile methods
 Constant iteration
 Self-directed teams
 Minimal documentation
 Example: Scrum

 Both methods are widely used and many successful teams use aspects of both
 The project for this class will mostly employ traditional methods because agile

works best with experienced developers

 Traditional methods rely on project managers while agile
methods focus on self-directed teams

 Managers are responsible for:
 Planning: Setting goals and requirements, deciding who does what

when, estimating costs, etc.
 Execution: Getting resources, training people, deciding processes
 Control: Collecting and analyzing data and making adjustments
 Leading: Motivating people, solving disagreements, supporting

people

 Requirements are functions or characteristics that software
has

 Customers or users determine the requirements
 Stakeholder is a broad term that includes customers, users,

developer, managers, and maybe the public
 Designs specify how the software system will meet the

requirements
 Designs can look at a system from different aspects
 Design patterns are standard solutions to problems that have

been useful in the past and can help structure designs

 After the design is made, the software must be implemented
in one or more programming languages

 Compilers and interpreters are used to run the programs
 Editors allow people to write code
 Version control tools let people track the evolution of the

code
 Code checkers see if the code is meeting certain standards
 Debuggers help programmers find mistakes

 Following certain practices can reduce defects
 Code reviews (literally looking through code) is one technique for finding

defects
 Testing is another
 Unit testing tools help us run test cases automatically
 Code coverage tools make sure all parts of the program are being tested

 Integrated development environments (IDEs) combine tools for editing and
testing code, doing version control, and lots of other things
 IntelliJ IDEA
 Eclipse
 Xcode
 Visual Studio
 IDLE

 For any large software project (and even small ones), it's
valuable to have a way to track changes over time

 Such tools are called version control systems
 They allow:
 Changes to be tracked over time
 Developers to check code into repositories
 Comparison of files over time
 Documentation of changes made

 It's more than just a glorified backup system

 A repository is where all the development data is stored
 Usually called repos by professionals

 Repositories include the current source code as well as a
history of all the changes ever made

 For source code, most version control systems use delta
compression, meaning that only the differences between files
are stored

 Thus, hundreds of versions of your code can be stored without
taking up hundreds of times the space

 Committing a file is adding its changes to a repository
 Cloning means creating a copy of another repository,

including history
 Merging is combining two sets of files with independent

changes into one set with changes from both
 Pulling (or fetching) copies the changes from an outside

repository and adds them to the current repository
 Pushing copies the changes from the current repository to an

outside repository

 Merging sucks
 You can try to avoid it, but ultimately, two people (or even

yourself working on two different local copies) will make
changes to the same files

 One of them will push their changes first
 The second will then have to merge
 Most systems are smart and can show those lines that conflict
 If not, there are tools that can do that

 Version control systems provide ways to
organize the development process

 One such feature is a visualization of the
development process

 The main sequence of development is
called the trunk

 Code bases that diverge from main
development (to work on a new feature)
are branches

 Tags are snapshots of the code base in a
particular state, often a release HEAD

Discontinued

Release 1

Release 2

Tags Trunk Branches

 Git
 Git is one of the most popular systems with a distributed model

 SVN
 SVN is one of the most popular systems with a client-server model

 Microsoft Team Foundation Server
 Microsoft always has to have its own thing

 Mercurial
 Mercurial competes with Git as a distributed VCS

 Perforce
 A big suite of tools that can do its own things or integrate with Git

 CVS
 An old client-server tool that was popular until SVN overtook it

 Linus Torvalds, the creator of Linux, created Git in 2005
 Linux is a huge, distributed development project, and he

needed a tool to organize the contributions people were
making

 Torvalds hated CVS
 He's a guy who hates a lot of things

 Git is a distributed VCS
 Every computer has a complete history of all the changes,

ever
 There's no central server
 Programmers make changes and push them to or pull them

from other repositories
 All operations are designed to be fast
 Torvalds did a pretty good job, but some common tasks are

confusing

 Once a repository is created in a directory, you can create files
in that directory

 A file isn't tracked by Git until you add it
 A group of tracked files with changes can be committed to

the local repository
 Then, you can choose to push those changes to another

repository if you want other people to have them
 Sometimes, you don't want files to be tracked, so you can add

their names (or wildcards like *.class) to a .gitignore
file

Working
Directory

Staging
(Index)

Local
Repository

Remote
Repository

Add Commit Push

FetchReset

Pull

It's also possible to reset to an earlier commit, overwriting the working directory, but it's
confusing to put that arrow in.

 There are many tools built on top of Git, but Git was designed for command-line
operation
 git init [project] Create a new repo
 git clone [url] Copy a repo from the URL
 git status List all new and modified files
 git add [file] Stage the file to be committed
 git commit -m "message" Commit the staged files with the message
 git fetch [bookmark] Download changes from bookmarked repo
 git merge [bookmark]/[branch] Combine bookmarked repo into local branch
 git pull Fetch + merge

 There's a lot more, but that's enough to get yourself in trouble

 IntelliJ has a GUI interface for Git
 It's easiest to use the Get from Version Control option when making a

new project
 If you're using GitHub, it's good to add your GitHub account to your IntelliJ
 For plain-old Git, you can use the Repository URL

 No matter what you do, pay attention to where the files get stored
 Don't store stuff on lab computers since it'll get wiped
 You can use OneDrive if you want to work on lab computers

 Once you've got the project set up in IntelliJ, you can use its built-in tool
to talk to the GitHub repo

 The initial set-up is annoying, but then it's not bad
 Manage all files through IntelliJ, not by doing uploads through GitHub

 Git is confusing!
 Don't be afraid to ask me questions
 But you can also Google
 There are some reasonably good videos to introduce Git:
 https://www.youtube.com/watch?v=USjZcfj8yxE
 https://www.youtube.com/watch?v=HVsySz-h9r4

 Git cheat sheet: https://www.jrebel.com/system/files/git-
cheat-sheet.pdf

https://www.youtube.com/watch?v=USjZcfj8yxE
https://www.youtube.com/watch?v=HVsySz-h9r4
https://www.jrebel.com/system/files/git-cheat-sheet.pdf

 GitHub.com provides online repositories for code
 Private repositories (except for education) are not free
 Public repositories are free

 Git can be used without GitHub
 GitHub can even be used without Git (since it has support for SVN)
 GitHub has nice tools for:
 Visualizing who's committing and how much they have changed
 Issue tracking
 Writing commit information and Read Me files
 Pushing and pulling repos stored on GitHub
 Creating webpages related to releasing software

 Ironically, Linus Torvalds hates GitHub

 Friday is our first work day
 We'll get teams nailed down
 We'll get everyone added to GitHub
 It's not a bad idea to make a GitHub account if you haven't already

 Hopefully, you'll pick your projects

 Read Chapter 5: Software Product Requirements for Monday
 Start working on your projects!

	COMP 3100
	Last time
	Questions?
	Back to Software Engineering
	Questions when building software products
	More problems for large products
	History of software engineering
	State of software development
	Sources of problems
	Management
	Management
	Aspects of a project that must be managed
	Project management iron triangle
	Software development methods
	Management
	Requirements and design
	Implementation
	Assuring quality
	Version Control
	Version control
	Repository
	Actions
	Merging
	Visualization of development
	Popular version control systems
	Git
	History of Git
	Philosophy of Git
	Operations in Git
	Git process
	Git cheatsheet
	Using Git with IntelliJ
	Resources for Git
	GitHub
	Upcoming
	Next time…
	Reminders

